Виж Crux Mathematicorum 7/2001, стр. 466.

2559. [200 : 305] Proposed by Hojoo Lee, student, Kwangwoon University, Kangwon-Do, South Korea.

Triangle ABC has incentre I. Show that CA + AI = CB if and only if $\angle CAB = 2 \angle ABC$.

Solution by Toshio Seimiya, Kawasaki, Japan; Mitko Kunchev, Baba Tonka School of Mathematics, Rousse, Bulgaria; and Gottfried Perz, Pestalozzigymnasium, Graz, Austria.

Since *I* is the incentre of $\triangle ABC$, we have $\angle ICA = \angle ICB$, $\angle IAC = \angle IAB$ and $\angle IBC = \angle IBA$. Hence $\angle CAI = 1/2 \angle CAB$ and $\angle CBI = 1/2 \angle ABC$. Let *D* be the point on *AC*, so that *A* is between *C* and *D*, and *AD* = *AI*. Then $\angle CDI = 1/2 \angle CAI$ and therefore, $\angle CDI = 1/4 \angle CAB$.

- (1) Let CA + AI = CB. Then CA + AI = CA + AD = CD, so that CD = CB. Since $\angle DCI = \angle BCI$, the triangles CDI and CBI are congruent. Thus $\angle CDI = \angle CBI$. Hence $1/4 \angle CAB = 1/2 \angle ABC$. Therefore, $\angle CAB = 2 \angle ABC$.
- (2) Let $\angle CAB = 2 \angle ABC$. Then $1/4 \angle CAB = 1/2 \angle ABC$, so that $\angle CDI = \angle CBI$. Since $\angle DCI = \angle CBI$, the triangles *CDI* and *CBI* are congruent, so that *CD* = *CB*. As AD = AI, we have CD = CA + AD = CA + AI. Therefore, CA + AI = CB.

From (1) and (2), it follows that CA + AI = CB if and only if $\angle CAB = 2 \angle ABC$.

